RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2019-22]

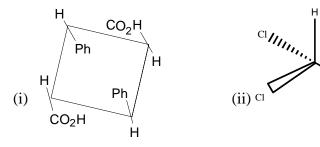
B.A./B.Sc. FIRST SEMESTER (July – December) 2019 Mid-Semester Examination, September 2019

Date : 16/09/2019 Time : 1 pm - 2 pm CHEMISTRY (Honours)

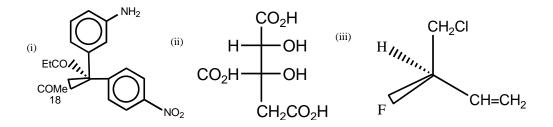
Paper: II [CC 2] Full Marks: 25

(Use a separate Answer Book for each group)

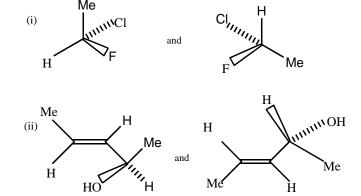
Group - A


Answer any one question from the followings:

 $[1\times9]$


[2]

[3]


- 1. a) Assign R/S configurational description at the chiral centres of the following compounds.
 - (i) L-phenylalamine; (ii) L-(-)glucose (only C-5)
 - b) Indicate the symmetry element present in the following compounds: [3]

- c) Justify or Criticise: [2×2]
- i) C₂ of (Z)-2-butene is a stereogenic centre.
 - ii) Meso tartaric acid is optically inactive due to presence of plane of symmetry.
- 2. a) Assign R/S configurational descriptor at the chiral centres of the following molecules. [4]

b) Label the following molecules as homomers, Enantiomers or diastereomers:

c) Determine whether each of the following molecules is chiral or achiral, Justify your answer.

Group -B

Answer <u>any two</u> questions from the followings:

 $[2\times8]$

[3]

[2]

- 3. a) A 2L flask contains two non-reacting gases A and B at constant temperature 300 K and pressure 1 atm. The diameter of A and B are 2 Å and 3 Å and no. of moles of gases are 2 and 3, respectively. Calculate the total no. of binary collision per cm³ per sec. (M_A=4 gm mol⁻¹, M_B=28 gm mol⁻¹)
 - b) Consider a mixture of NH_3 and N_2 gases (real). What are the different types of forces interacting here? Explain. [3]
 - c) Comment on reversibility (reversible or irreversible) for the following: [2]
 - i) Vaporisation of water at 100°C and 1 atm.
 - ii) Diffusion of gas into another gas at constant T and P.
 - iii) An ideal gas expands against a constant P.
 - iv) Vaporisation of water at 100°C and 1 atm in a closed vessel.
- 4. a) Draw a family of Z vs P curves for a real gas at different temp. (below, at and above Boyle temp.)

[3]

- b) State the Euler's theorem on homogeneous function. Apply the theory to show that volume of an ideal gas is a homogenous function of zeroth degree in P and T.
- [1+2]

[2]

- c) At STP, the viscosity coefficient of oxygen is 0.2 mPoise. Find out the collision diameter of oxygen.
- 5. a) What does mean free path signify? Discuss the effect of T and P on the mean free path of a gas. [1+2]
 - b) Consider an ideal gas system at (P_2,V_1) state which is changed to (P_1,V_2) state (with $P_2>P_1$ and $V_2>V_1$) on the same isotherm T in two different paths?
 - Path $A 1^{st}$ keeping P constant and then keeping V constant.
 - Path $B 1^{st}$ keeping V constant and then keeping P constant.
 - i) Give an indicator plot in P vs V axes.
 - ii) Change in T in these two paths are different. Show it.
 - iii) What are the amount of heat involved in these two paths?

[1+1+1]

[2]

c) Arrive at the reduced equation of state for a van der Waals gas equation.